Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.

نویسندگان

  • D Truzzolillo
  • F Bordi
  • F Sciortino
  • S Sennato
چکیده

We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length kappa(-1), short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio xi(s), the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forces between aqueous nonuniformly charged colloids from molecular simulation

NVT Monte Carlo simulation results are presented for the forces between charged colloids within the primitive model for electrolytes. The calculations show that when charged colloids have a net dipole moment, a strong attraction can arise at short separations. The attractive force is not purely electrostatic; significant contributions follow from hard-sphere collisions between the electrolyte i...

متن کامل

Attraction between Like Charged Surfaces Mediated by Uniformly Charged Spherical Colloids in a Salt Solution

Like-charged macromolecules repel in electrolyte solutions that contain small (i.e. point-like) monovalent coand counterions. Yet, if the mobile ions of one species are spatially extended instead of being point-like, the interaction may turn attractive. This effect can be captured within the mean-field Poisson-Boltzmann framework if the charge distribution within the spatially extended ions is ...

متن کامل

The electrostatic persistence length calculated from Monte Carlo, variational and perturbation methods

Monte Carlo simulations and variational calculations using a Gaussian ansatz are applied to a model consisting of a flexible linear polyelectrolyte chain as well as to an intrinsically stiff chain with up to 1000 charged monomers. Addition of salt is treated implicitly through a screened Coulomb potential for the electrostatic interactions. For the flexible model the electrostatic persistence l...

متن کامل

Comparison of the Debye–Huckel and the Mean Spherical Approximation Theories for Electrolyte Solutions

The thermodynamics of electrolyte solutions has been investigated by many scientists throughout the last century. While several theories have been presented, the most popular models for the electrostatic interactions are based on the Debye− Hückel and mean spherical approximation (MSA) theories. In this paper we investigate the differences between the Debye− Hückel and the MSA theories, and com...

متن کامل

Simple approach for charge renormalization in highly charged macroions.

We revisit the notion of renormalized charge, which is a concept of central importance in the field of highly charged colloidal or polyelectrolyte solutions. Working at the level of a linear Debye-Hückel-like theory only, we propose a versatile method to predict the saturated amount of charge renormalization, which is, however, a nonlinear effect arising at strong electrostatic coupling. The re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 133 2  شماره 

صفحات  -

تاریخ انتشار 2010